Package: LFDR.MME (via r-universe)

September 14, 2024

Type Package

2 LFDR.MM

LFDR.MM

Performs a Multiple Hypothesis Testing Using the Method of Moments

Description

Based on a given vector of chi-square test statistics, provides estimates of local false discoveries.

Usage

LFDR.MM(x)

Arguments

Х

A vector of chi-square test statistics with one degree of freedom.

Details

For N given features (genes, proteins, SNPs, etc.), the function tests the null hypothesis H_{0i} , $i=1,\ldots,N$, indicating that there is no association between feature i and a specific disease, versus its alternative hypothesis H_{1i} . For each unassociated feature i, it is supposed that the corresponding test stiatistic x_i follows a central chi-square distribution with one degree of freedom. For each associated feature i, it is assumed that the corresponding test stiatistic x_i follows a non-central chi-square distribution with one degree of freedom and non-centrality parameter λ . In this packag, association is measured by estimating the local false discovery rate (LFDR), the posterior probability that the null hypothesis H_{0i} given the test statistic x_i is true. This package returns three components as mentioned in the **Value** section.

Value

Outputs three elements as seen below:

pi0. hat estimate of proportion of unassocaited features π_0 .

ncp. hat estimate of the non-centrality parameter λ of the chi-square model for associated

features.

1fdr.hat estimates of local false discovery rates.

Author(s)

Code: Ali Karimnezhad.

Documentation: Ali Karimnezhad.

References

Karimnezhad, A. (2020). A Simple Yet Efficient Parametric Method of Local False Discovery Rate Estimation Designed for Genome-Wide Association Data Analysis. Retrieved from https://arxiv.org/abs/1909.13307

LFDR.MM 3

Examples

```
# vector of test statistics for assocaited features
stat.assoc<- rchisq(n=1000,df=1, ncp = 3)

# vector of test statistics for unassocaited features
stat.unassoc<- rchisq(n=9000,df=1, ncp = 0)

# vector of test statistics
stat<- c(stat.assoc,stat.unassoc)

output <- LFDR.MM(x=stat)

# Estimated pi0
output$p0.hat

# Estimated non-centrality parameter
output$ncp.hat

# Estimated LFDRs
output$lfdr.hat</pre>
```

Index

 \ast Chi-Square Distribution

LFDR.MM, $\frac{2}{}$

 $* \ Empirical \ Bayes$

LFDR.MM, 2

* Local False Discovery Rate

LFDR.MM, 2

* Multiple Hypothesis Testing

 $\mathsf{LFDR}.\mathsf{MM}, \textcolor{red}{2}$

* Null Hypothesis

LFDR.MM, 2

LFDR.MM, 2