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Abstract

The package LFDREmpiricalBayes contains a series of functions aiming at analyzing the asso-
ciation of single nucleotide polymorphisms (SNPs) to some particular disease. The functions use
estimated local false discovery rates (LFDRs) of SNPs within a sample population that we de�ne as
a �reference class�. Of the proposed methods, the maximum entropy method is based on ratio of two
likelihood functions generated on the basis of two alternative reference classes. The other methods
are based on robust Bayes approaches and are applicable to more than two reference classes. The
explanations in this report allow for a better understanding of the basic ideas of how the functions in
this package work as well as detailed examples that are useful in analyzing a given data set. Although
SNPs are used throughout this document, other biological data such as protein data and other gene
data can be used.
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1 Introduction

The package LFDREmpiricalBayes contains a series of functions aiming at analyzing the association
of SNPs to some particular disease. These functions include ME.log, caution.parameter.actions,
SEL.caution.parameter and PRGM.action. Details and the theories behind these functions have been
extensively discussed in Karimnezhad and Bickel (2016a).

The function ME.log uses the new maximum entropy approach given two reference classes (the de�ni-
tion of a reference class is provided in details in subsection 3.1). The new ME approach will consider both
reference classes and provides a vector of more reliable LFDR estimates copmared to the input vector of
LFDRs computed based on the two alternative reference classes (Karimnezhad and Bickel, 2016a).

The function ME.log as well as the functions caution.parameter.actions, SEL.caution.parameter
and PRGM.action use estimated values of local false discovery rate (LFDR) as input elements. Although
in this report we use maximum likelihood (ML) LFDR estimates, all these functions except ME.log work
with other estimates of LFDR2.

caution.parameter.actions provides three robust Bayes actions (based on three di�erent values
for a caution parameter) to determine if a speci�c SNP is associated with some disease. As well,
SEL.caution.parameter provides three robust Bayes estimates of LFDR (based on three di�erent val-
ues for a caution parameter) correspoding to a speci�c SNP. The estimates can be used to determine
if the SNP is associated with the relevent disease. PRGM.action provides a robust Bayes value of the
correspoding LFDR estimates. These three functions are based on two or more reference classes.

This vignette was created to demonstrate practical examples for each function in LFDREmpiricalBayes
so that users can better understand the code output. It provides comprehensive examples of the functions,

2such as binomial-based LFDR estimator (BBE) or histogram-based LFDR estimator (HBE) (Yang et al., 2013).
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their corresponding interpretation, and a user-friendly explanation of the theoretical aspects associated
with the functions and the methodologies developed in Karimnezhad and Bickel (2016a).

2 How to Install and Use This Package

In order to install and use this package, simply input the following commands into the R console.

> source("https://bioconductor.org/biocLite.R")

> biocLite("LFDREmpiricalBayes")

Note that this package uses other functions in the packages matrixStats and stats. This package
also uses the function lfdr.mle from the package LFDR.MLE. To install the packages and use them, input
the following into the R console.

> install.packages(c("LFDR.MLE","matrixStats","stats"))

Ensure that the following packages are loaded before using LFDREmpiricalBayes:

> library(LFDR.MLE)

> library(matrixStats)

> library(stats)

For more information, consult their respective documentation.

3 Basic De�nitions

Before detailing the important functions of this package, a few concepts relating to relevant methods
of the functions should be explained.

3.1 Reference Classes

One of the motivating factors in estimating LFDRs, as described in Karimnezhad and Bickel (2016a),
involves choosing which set of LFDR estimates gives the best estimates. The main reason for this is due
to having two di�erent sets of LFDR estimates, which is referred to as a reference class. With the two
reference classes, there lies a situation in which a subset of LFDR estimates can fall into both classes.
In this case, the decision on whether to favour one class over the other is highly important.

Leading to favouring one class over another, two di�erent reference class de�nitions were considered
as two di�erent cases. Those two cases are described in more details in Parts 3.1.1 and 3.1.2.

3.1.1 Considering Separate and Combined Reference Classes

In Figure 1, consider the two groups: ncRNA and UTR-3 groups containing 3 and 2 SNPs, re-
spectively. Considering a series of LFDR estimates for SNPs in both the ncRNA and UTR-3 regions, a
separate class considers only a small subset of the region seen in Figure 1. In this case, the region ncRNA
containing the �rst three SNPs (i.e. SNP1, SNP2 and SNP3) is a separate reference class. The combined
referece class is de�ned as the class that contains all SNPs in both the ncRNA and UTR-3 regions (i.e.
the green rectangular). Now, to estimate LFDR for each of ncRNA SPNs, for example SNP1, there are
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Figure 1: A visual diagram illustrating the separate and combined classes (Karimnezhad and Bickel,
2016b).

two reference classes with red and green regions in Figure 1. Determining which of the two reference
classes (separate or combined) should be used to estimate the corresponding LFDR is the motivation of
using the functions provided in this package.

3.1.2 Considering First and Second Reference Class Terms

Figure 2: This �gure illustrates the �rst and second reference classes and the intersection.

In Figure 2, we consider the �rst class in red to be exonic SNPs (SNP2, SNP3 and SNP4) and the
second class in green to be ncRNA SNPs (containing SNP3, SNP4, SNP5 and SNP6). The intersection
contains SNP3 and SNP4. The corresponding LFDR estimates based on the �rst class and the second
class can be di�erent. Determining an appropriate reference class to be used to reach a reliable LFDR
estimate is our motivation.

3.2 Multiple Hypothesis Testing

Performing multiple hypothesis testing is important in terms of evaluating the relationship between
a set of data within a population to some condition. The most general case in a biological perspective
can be whether or not there is an association between an SNP and a particular disease. For example,
Karimnezhad and Bickel (2016a) performed a genome-wide association analysis for the coronary heart
disease (Consortium et al., 2007).

The framework of the multiple hypothesis testing problem considered here is as follows. For an
ith SNP, i = 1, 2, . . . , N , the null hypothesis H0i : Ai = 0 is tested against the alternative hypothesis
H1i : Ai = 1, where Ai is an indicator that there is an association between SNP i and the disease. Under
the null hypothesis, i.e. Ai = 0, the ith SNP is supposed not to be associated with (a�ected by) the
underlying disease or treatment.
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3.3 Local False Discovery Rates Estimation

LFDR is the posterior probability that an SNP is not associated with a particular disease (Karim-
nezhad and Bickel, 2016a). In a biological sense, the data are reduced to some test statistics t1, t2,. . .,tN ,
and each test statistic ti represents a value for a particular SNP, say SNPi (i.e. t1 represents SNP1,
t2 represents SNP2,. . ., tN represents SNPN ). Then, LFDRi, i.e. the probability that SNPi is not as-
sociated with the underlying disease given the information that the value of the test statistics is ti, is
estimated.

3.4 Bayes Action on LFDRs Applied to Hypothesis Testing

A Bayes action is used to test a particular null hypothesis Ai. Once an estimated LFDR for SNP i
is available, the Bayes action (decision) correspoding to that SNP is considered as below

Decision =

{
0 if estimated LFDRi > threshold,

1 if estimated LFDRi ≤ threshold.
(1)

The interpretation of such a decision is as follows. If an estimated LFDRi corresponding to SNPi is
less than or equal to the pre-determined threshold, then the null hypothesis is rejected and as a result,
the SNPi is considered to be associated with the disease. Otherwise, the null hypothesis would fail to
be rejected and consequently, SNPi is inferred not be be associated with the disease (Karimnezhad and
Bickel, 2016a). The threshold considered above is determined by considering some loss values which are
the subject of the next part.

3.4.1 Zero-One Loss Function

The threshold considered in the previous subsection is determind by considering some loss values
as important components in the decision theory. The loss values considered are based on type-I (false-
positive) and type-II (false-negative) errors. In using loss values, a value or a weight is assigned to either
one of a type-I error or a type-II error. The weight is based on an incurred penalty associated in obtaining
one of those errors. Introducing the fact that a type-I error is a less desirable outcome than a type-II
error, the weighting of a loss value associated with a type-I would be higher than that of a type-II error.

Referring to the type-I and type-II errors by the loss values lI and lII , Karimnezhad and Bickel
(2016a) use the following loss function

LZO =


0 if δi = Ai ∈ {0,1},

lI if δi = 1, Ai = 0,

lII if δi = 0, Ai = 1,

where δi = δ(ti) is the decision rule (1).

The decision rule (1) is called the Bayes rule if the threshold is taken to be

threshold =
lII

lI + lII
. (2)

Recalling that type-I error should be avoided as much as possible, it is recommended that lI be
greater than lII . Following this recommendation, a threshold of 0.2 was chosen (Efron, 2005), assigning
a value of 4 to lI and a value of 1 to lII .

In addition to the Bayes action, caution.parameter.actions uses a decision-theoretic approach in
forming a large scale hypothesis problem and draws conclusions based on the experimental data set.

5



caution.parameter.actions applies some additional information in terms of reference classes (two or
more) to test the null hypothesis based on some avaialbe estimated LFDR values. The output from this
function gives two values 0 and 1 for each caution-type decision.

3.4.2 Squared Error Loss Function

In estimating the hypothesis indicator Ai, Karimnezhad and Bickel (2016a) use the following squared
error loss function

LSEL = (δi −Ai),

where δi = δ(ti) is an arbitrary decision rule with support (−∞,+∞).

4 The Maximum Entropy Method

The maximum entropy method, where ME.log is the corresponding function, provides a vector of
more reliable LFDR estimates based on comparing two likelihood functions constructed based on two al-
ternative reference classes. It overcomes the lack of knowledge that speci�es whether a separate reference
class or a combined reference class should be used to get more reliable estimates of LFDRs for SNPs.
This approach leads to a �selected reference class" and giving credit to the selected reference class, an
estimate of LFDR is computed for each SNP.

4.1 Inputs of ME.log

The inputs of ME.log are the following:

� stat: test statistic values corresponding to SNPs in the separate and combined reference classes

� lfdr.C: estimated LFDRs for SNPs in the combined reference class

� p0.C: proportion of unassociated SNPs belonging to the combined class

� p0.S: proportion of unassociated SNPs belonging to the separate class

� ncp.C: the non-centrality parameter of a chi-square distribution for associated SNPs belonging to
the combined reference class

� ncp.S: the non-centrality parameter of a chi-square distribution for associated SNPs belonging to
the separate reference class

Within the ME.log function, there are a series of parameters. Di�erent positive values can be chosen
for parameter a indicating grades of evidence against the separate reference class and in favor of its
alternative. The defalut value for this parameter is set to 3 (Bickel, 2015)

The parameter p0 indicates the proportion of SNPs that are not associated with the disease. The
parameters lower.p0 and upper.p0 represent pre-assumed lower and upper bounds of p0, respectively.
By default, those values are set to 0 and 1, respectively. lower.ncp and upper.ncp are used to denote
the lower and upper limits of the non-centrality parameter ncp, respectively. By default, those values
are set to 0.1 and 50, respectively. The methodolgy behind the ME method requires that the interval
[lower.p0,upper.p0] be divided to length.p0 partitions. As well, the interval [lower.ncp,upper.ncp]
is be divided to length.ncp partitions. By default, length.p0 and length.ncp values are set to 200.

The function ME.log depends on the function lfdr.mle for obtaining LFDR estimates. The LFDR
estimates are then used in lfdr.C for the input of ME.log.
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5 Using ME.log

The following subsections demonstrates the steps needed to use the ME.log function.

5.1 Obtaining Test Statistics and Associated Parameters

The code below is an example of a simulation study. Arti�cial SNPs are created, and test statistics are
obtained. It is assumed that the separate reference class 20 arti�cial SNPs that are not associated with a
speci�c disease. Also, it is assumed that the separate reference class is a subset of a combined reference
class which contains 20 nonassociated and 20 associated SNPs. Given that the separate reference class
is a subset of the combined reference class, the 20 SNPs in the separate reference class, each has two
possible LFDR estimates.

> #import function "lfdr.mle" from package "LFDR.MLE"

> library(LFDR.MLE)

> ##From the simulation study, create artificial SNPs and obtain test statistics.

> sdORS<-sdORC<-sqrt(.02) #some parameters required for simulation.

> real.OR1.S<-1.25

> real.OR1.C<-1.25

> nS1<-0 ##Number of artificial SNPs associated with a

> ## disease in a separate reference class.

> nS2<-20 ## Number of artificial SNPs not associated with

> ## a specific disease in a separate reference class.

> nC1<-20 ##Number of artificial SNPs associated with a specific disease

> ## outside the separate reference class but inside a combined reference class.

> nC2<-0 ##Number of artificial SNPs not associated with a specific disease

> ## outside the separate reference class but inside a combined reference class.

>

> ##zS1 generates test statistics for artificial SNPs associated with a

> ##specific disease in the separate reference class.

> zS1<-rnorm(nS1,mean=log(real.OR1.S),sd=sdORS)

> ##zS2 generates test statistics for artificial SNPs not associated with a

> ##specific disease in the separate reference class.

> zS2<-rnorm(nS2,mean=log(1),sd=sdORS)##

> zSmall<-c(zS1,zS2) ## test statistics from the 20 artificial SNPs

> ##zC1 generates test statistics for artificial SNPs associated with a specific

> ##disease in the combined reference class.

> zC1<-rnorm(nC1,mean=log(real.OR1.C),sd=sdORC)

> ##zC2 generates test statistics for artificial SNPs not associated with a

> ##specific disease in the combined reference class.

> zC2<-rnorm(nC2,mean=log(1),sd=sdORC)

> zBig<-c(zSmall,zC1,zC2) ## test statistics from the 40 artificial SNPs

>

5.2 Obtaining LFDR Estimates Using lfdr.mle

Prior to using the function ME.log, chi-square test statistics need to be obtained. The test statistics
from the separate and combined reference class, are transformed in order to obtain a chi-square distri-
bution. The function ME.log then uses the function lfdr.mle from the package LFDR.MLE to compute
LFDR estimates (Padilla et al., 2012).

> ##Then obtain chi-square test statistics

> ## Separate reference class
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> xS1<-(zS1/sdORS)^2

> xS2<-(zS2/sdORS)^2

> xSmall<-c(xS1,xS2) ##chi-square test statistics from 20 SNPs

> ## Combined reference class

> xC1<-(zC1/sdORC)^2

> xC2<-(zC2/sdORC)^2

> xBig<-c(xSmall,xC1,xC2) ##chi-square test-statistics from 40 SNPs

> #Using lfdr.mle, a series of arguments are used.

> dFUN=dchisq;df=1;

> lower.ncp = .1;upper.ncp = 5

> lower.p0 = 0;upper.p0 = 1;

> #Estimate the corresponding LFDRs using lfdr.mle

> ## Separate reference class

> opt.S<-lfdr.mle(x =xSmall, dFUN = dFUN, lower.ncp = lower.ncp, upper.ncp = upper.ncp,

+ lower.p0 = lower.p0, upper.p0 = upper.p0,df=df)

> lfdr.S <- opt.S$LFDR.hat ## Estimate the corresponding LFDRs

> p0.S<-opt.S$p0.hat

> ncp.S<-opt.S$ncp.hat

> ## Combined reference class

> opt.C<-lfdr.mle(x =xBig, dFUN = dFUN, lower.ncp = lower.ncp, upper.ncp = upper.ncp,

+ lower.p0 = lower.p0, upper.p0 = upper.p0,df=df)

> lfdr.C <- opt.C$LFDR.hat

> p0.C<-opt.C$p0.hat

> ncp.C<-opt.C$ncp.hat

>

5.3 Illustrating ME.log

Now the parameters from the previous subsections can be used into the ME.log function.

> library(stats)

> library(matrixStats)

> # Using lfdr.mle, a series of arguments are used.

> ## if ommitted they will have the default values.

> LFDR.ME<-ME.log(xSmall,lfdr.C,p0.C,ncp.C,p0.S,ncp.S,a=3,lower.p0=0,upper.p0=1,lower.ncp=0.1,

+ upper.ncp=50,length.p0=200,length.ncp=200)

> LFDR.ME

$p0.hat

p0

0.7258347

$ncp.hat

ncp

2.414872

$LFDR.hat

X1 X2 X3 X4 X5 X6 X7 X8

0.7139719 0.7235211 0.8960753 0.8585781 0.3551162 0.8823076 0.7067534 0.7009945

X9 X10 X11 X12 X13 X14 X15 X16

0.8080816 0.8843164 0.8675658 0.6979870 0.8952554 0.8206791 0.8938410 0.8945054

X17 X18 X19 X20 X21 X22 X23 X24

0.7608390 0.8571078 0.8011087 0.8795937 0.2783162 0.8976624 0.7613507 0.8169643

X25 X26 X27 X28 X29 X30 X31 X32

0.1815197 0.8339323 0.1220688 0.6412282 0.8792812 0.7455224 0.7329422 0.6957792
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X33 X34 X35 X36 X37 X38 X39 X40

0.8862349 0.8439068 0.7007660 0.8378989 0.7296153 0.1700434 0.7778329 0.6023140

>

LFDR estimates were obtained from the output as $LFDR.hat. The LFDRs are of same length as the
test statistic vector (stat) of the input. In fact, the new LFDR estimates have the same length as the
SNPs falling into the intersection of both reference classes. Each $LFDR.hat is based on the corresponding
p0 and ncp given by $p0.hat and $ncp.hat. These $p0.hat and $ncp.hat are determined according to
the likelihood set constructed based on two likelihood functions generated on the basis of the separate
and combined reference classes. For more details refer to Karimnezhad and Bickel (2016a).

6 caution.parameter.actions

This function provides three actions based on three di�erent values for a caution parameter de�ned
in Karimnezhad and Bickel (2016a).

6.1 Input

The function caution.parameter.actions allows for a user to input two vectors of LFDR estimates
of any size. The two inputs vectors x1 and x2 should be of the same size. These vectors refer to LFDR
estimates for SNPs falling into the intersection of the two reference classes de�ned in subsection 3.1.

6.2 Output

The output of caution.parameter.actions is a list containing three vectors of actions which have
been extensively discussed in Karimnezhad and Bickel (2016a).

� CGM1: refers to conditional-Gamma minimax action with caution parameter 1

� CGM0: refer to conditional-Gamma minimin action with caution parameter 0

� CGM0.5: refers to a caution-type action with caution parameter 0.5 which is a balance between
CGM0 and CGM1

CGM1, the caution-type estimator describes the maximum amount of caution taken towards ambigu-
ity while CGM0 describes the minimal caution towards ambiguity (Bickel, 2015). Given an individual's
prior belief of their subjective probability estimates, once the outcome is given, the individual's belief is
updated. Note that the prior beliefs cannot be assessed with certainty. In this case, an individual must
perform a best guess based on the prior information given to them. This is de�ned as ambiguity (Dobbs,
1991).

The theory behind these actions involves the loss fucntion LZO introduced earlier Part 3.4.1. The
outputs from the three caution-type decisions is either 0 or 1.

6.2.1 Interpreting the results from caution.parameter.actions

When interpreting the results of the function, the three caution-type decisions should be considered
independently. In order to simplify matters, a vector of size 1, which corresponds to SNP1, is used to
help illustrate a hypothetical case.
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Example 1: Consider the following cases:
$CGM1

[1] 0

$CGM0

[1] 0

$CGM0.5

[1] 1

By Example 1, the outputs of CGM1 and CGM0 contain the same value. Interpreting the values of
CGM1 and CGM0 of SNP1, the two show a value of 0 re�ecting that there is no association between SNP1
and the disease. In this case, the null hypothesis is failed to be rejected. On the other hand, the result
of CGM0.5 is a value of 1. Thus, the null hypothesis is rejected and it is interpreted that there is an
associaiton between SNP1 and the disease. Depending on the caution-type estimator chosen, the decision
can be di�erent depending on which of CGM1, CGM0 or CGM0.5 the user chooses.

A more realistic example on how to interpret the results can be illustrated more e�ectively. From the
R documentation LFDREmpiricalBayes, an example was provided where two vectors of size 4 are used.
Noting that each index corresponds to a particular SNP value (e.g. index 1 corresponds to SNP1, index
2 corresponds to SNP2, etc.) a more detailed explanation is presented below.

Example 2: A basic interpretation of the outputs.

> LFDR.Separate <- c(.14,.8,.16,.30)

> LFDR.Combined <- c(.21,.61,.12,.10)

> output <- caution.parameter.actions(LFDR.Separate, LFDR.Combined)

> output

$CGM1

[1] 1 0 1 0

$CGM0

[1] 1 0 1 1

$CGM0.5

[1] 1 0 1 0

In this example, there are 4 SNPs. Here, SNP1, SNP2 and SNP3 have the same output for the three
caution-type estimators. SNP4, on the other hand, has the same result for caution-type decisions CGM1
and CGM0.5 but a di�erent result for CGM0. Thus, CGM1 and CGM0.5 re�ects that there is no association
between SNP4 and the disease, whereas on the basis of CGM0 there is an association between SNP4 and
the disease (the null hypothesis is rejected). Ultimately, the user would have to choose amongst one of
the three caution-type estimators for their analysis. For example, in the simulation studies performed
with the coronary artery disease in Karimnezhad and Bickel (2016a), CGM1 and CGM0.5 were shown to
perform better than CGM0.

7 SEL.caution.parameter

This function provides three actions based on three di�erent values for a caution parameter de�ned
in Karimnezhad and Bickel (2016a). Unlike the function caution.parameter.actions which is based
on the LZO loss function, this function is based on the LSE loss function introduced earlier in Part 3.4.2.

10



7.1 Input

Much like caution.parameter.actions, SEL.caution.parameter accepts two vectors x1 and x2

which correspond to the two vectors of the separate and combined reference classes that were used in
the former function.

7.2 Output

This output of this function is a list containing three vectors. The name of the three vectors are the
same as the ones in caution.parameter.actions, i.e. CGM1, CGM0, and CGM0.5. Unlike the function
caution.parameter.actions, which returns a 0 or a 1 value, this function returns any value between 0

to 1. The closer the value it is to zero, the higher the accuracy is interpreted in estimating the hypothesis
indicator Ai (Karimnezhad and Bickel, 2016a).

7.3 Examples

For a better clari�ciation of performance of the function SEL.caution.parameter, the same example
as seen in caution.parameter.actions is used.

Example 1: Consider the same Example 1 in caution.parameter.actions.

> LFDR.Separate <- c(.14,.8,.16,.3)

> LFDR.Combined <- c(.21,.61,.12,.1)

> output <- SEL.caution.parameter(LFDR.Separate, LFDR.Combined)

> output

$CGM1

[1] 0.86 0.20 0.88 0.90

$CGM0

[1] 0.825 0.295 0.860 0.800

$CGM0.5

[1] 0.79 0.39 0.84 0.70

Notice that the vectors have the same length in both the outputs of both caution.parameter.

actions and SEL.caution.parameter. In this case, each corresponding element gives an estimate of
the hypothesis indicator Ai from the three caution-type actions seen in caution.parameter.

actions.

8 PRGM.action

PRGM.action is a function that computes the posterior regret Gamma minimax estimate of the
hypothesis indicator Ai based on the two reference classes discussed earlier in Subsection 3.1. The
thoery behind this function is on the basis the LSE loss function introduced in Part 3.4.2.

8.1 Input

Similar to the functions caution.parameter.actions and SEL.caution.parameter, the inputs are
two vectors of LFDR estimates x1 and x2 coresponding to the reference classes.
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8.2 Output

The output of PRGM.action is equivalent to the output CGM0 from the function SEL.caution.

parameter. It returns a list which is one minus the average of x1 and x2.

8.3 Examples

The following example will provide a small demonstratation of the relationship between the output
of PRGM and the CGM0 output vector of SEL.caution.parameter.

Example 1: Demonstrating the equivalence of PRGM and CGM0.

> LFDR.Separate <- c(.14,.8,.16,.3)

> LFDR.Combined <- c(.21,.61,.12,.1)

> output <- PRGM.action(x1 = LFDR.Separate, x2 = LFDR.Combined)

> output

$PRGM

[1] 0.825 0.295 0.860 0.800

Comparing the outputs of PRGM and that of CGM0 of SEL.caution.paramter, as seen in Subsection 7.3,
the outputs are the same.
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